431 research outputs found

    Star formation in shocked cluster spirals and their tails

    Get PDF
    Recent observations of ram pressure stripped spiral galaxies in clusters revealed details of the stripping process, i.e., the truncation of all interstellar medium (ISM) phases and of star formation (SF) in the disk, and multiphase star-forming tails. Some stripped galaxies, in particular in merging clusters, develop spectacular star-forming tails, giving them a jellyfish-like appearance. In merging clusters, merger shocks in the intra-cluster medium (ICM) are thought to have overrun these galaxies, enhancing the ambient ICM pressure and thus triggering SF, gas stripping and tail formation. We present idealised hydrodynamical simulations of this scenario, including standard descriptions for SF and stellar feedback. To aid the interpretation of recent and upcoming observations, we focus on particular structures and dynamics in SF patterns in the remaining gas disk and in the near tails, which are easiest to observe. The observed jellyfish morphology is qualitatively reproduced for, both, face-on and edge-on stripping. In edge-on stripping, the interplay between the ICM wind and the disk rotation leads to asymmetries along the ICM wind direction and perpendicular to it. The apparent tail is still part of a highly deformed gaseous and young stellar disk. In both geometries, SF takes place in knots throughout the tail, such that the stars in the tails show no ordered age gradients. Significant SF enhancement in the disk occurs only at radii where the gas will be stripped in due course.Comment: 6 pages, submitted to MNRAS Letter

    The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties

    Get PDF
    We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (∼94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M_⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R <R200, velocities |vpec| < 3.5σ200 and stellar masses 9.5 ≤ log(M^∗_(approx)/M_⊙) ≤ 12. Finally, we give an update on the SAMI-GS progress for the cluster regions

    The stripping of a galaxy group diving into the massive cluster A2142

    Full text link
    Structure formation in the current Universe operates through the accretion of group-scale systems onto massive clusters. The detection and study of such accreting systems is crucial to understand the build-up of the most massive virialized structures we see today. We report the discovery with XMM-Newton of an irregular X-ray substructure in the outskirts of the massive galaxy cluster Abell 2142. The tip of the X-ray emission coincides with a concentration of galaxies. The bulk of the X-ray emission of this substructure appears to be lagging behind the galaxies and extends over a projected scale of at least 800 kpc. The temperature of the gas in this region is 1.4 keV, which is a factor of ~4 lower than the surrounding medium and is typical of the virialized plasma of a galaxy group with a mass of a few 10^13M_sun. For this reason, we interpret this structure as a galaxy group in the process of being accreted onto the main dark-matter halo. The X-ray structure trailing behind the group is due to gas stripped from its original dark-matter halo as it moves through the intracluster medium (ICM). This is the longest X-ray trail reported to date. For an infall velocity of ~1,200 km s-1 we estimate that the stripped gas has been surviving in the presence of the hot ICM for at least 600 Myr, which exceeds the Spitzer conduction timescale in the medium by a factor of >~400. Such a strong suppression of conductivity is likely related to a tangled magnetic field with small coherence length and to plasma microinstabilities. The long survival time of the low-entropy intragroup medium suggests that the infalling material can eventually settle within the core of the main cluster.Comment: 11 pages, 7 figures, accepted for publication in A&

    Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    Get PDF
    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra, which highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals the presence of a leading edge and a complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300\sim300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, e.g. because of turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2Dk2.3P_{2D}\propto k^{-2.3}), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D0.10.25M_{3D}\sim0.1-0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.Comment: Accepted for publication in A&

    Deep Chandra observations of the stripped galaxy group falling into Abell 2142

    Get PDF
    In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond ~ 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k⁻²∙³ which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D ~ 0:1 -0:25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient

    Galaxy And Mass Assembly (GAMA) : The mechanisms for quiescent galaxy formation at z&lt;1

    Get PDF
    © 2016 The Authors. One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies.We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8Gyr, the quiescent population has grown more slowly in number density at high masses (M * > 10 11 M ⊙ ) than at intermediate masses (M * > 10 10.6 M ⊙ ). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times.At intermediatemasses (M * > 10 10.6 M ⊙ ), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ~ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z 10 11 M ⊙ ), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation

    The SAMI Galaxy Survey: Satellite galaxies undergo little structural change during their quenching phase

    Get PDF
    At fixed stellar mass, satellite galaxies show higher passive fractions than centrals, suggesting that environment is directly quenching their star formation. Here, we investigate whether satellite quenching is accompanied by changes in stellar spin (quantified by the ratio of the rotational to dispersion velocity V/σ\sigma) for a sample of massive (M>M_{*}>1010^{10} M_{\odot}) satellite galaxies extracted from the SAMI Galaxy Survey. These systems are carefully matched to a control sample of main sequence, high V/σV/\sigma central galaxies. As expected, at fixed stellar mass and ellipticity, satellites have lower star formation rate (SFR) and spin than the control centrals. However, most of the difference is in SFR, whereas the spin decreases significantly only for satellites that have already reached the red sequence. We perform a similar analysis for galaxies in the EAGLE hydro-dynamical simulation and recover differences in both SFR and spin similar to those observed in SAMI. However, when EAGLE satellites are matched to their `true' central progenitors, the change in spin is further reduced and galaxies mainly show a decrease in SFR during their satellite phase. The difference in spin observed between satellites and centrals at zz\sim0 is primarily due to the fact that satellites do not grow their angular momentum as fast as centrals after accreting into bigger halos, not to a reduction of V/σV/\sigma due to environmental effects. Our findings highlight the effect of progenitor bias in our understanding of galaxy transformation and they suggest that satellites undergo little structural change before and during their quenching phase.Comment: 11 pages, 7 figures. Accepted for publication in MNRA

    The two-component giant radio halo in the galaxy cluster Abell 2142

    Get PDF
    We report on a spectral study at radio frequencies of the giant radio halo in A2142 (z=0.0909), which we performed to explore its nature and origin. A2142 is not a major merger and the presence of a giant radio halo is somewhat surprising. We performed deep radio observations with the GMRT at 608 MHz, 322 MHz, and 234 MHz and with the VLA in the 1-2 GHz band. We obtained high-quality images at all frequencies in a wide range of resolutions. The radio halo is well detected at all frequencies and extends out to the most distant cold front in A2142. We studied the spectral index in two regions: the central part of the halo and a second region in the direction of the most distant south-eastern cold front, selected to follow the bright part of the halo and X-ray emission. We complemented our observations with a preliminary LOFAR image at 118 MHz and with the re-analysis of archival VLA data at 1.4 GHz. The two components of the radio halo show different observational properties. The central brightest part has higher surface brightess and a spectrum whose steepness is similar to those of the known radio halos, i.e. α118 MHz1.78 GHz=1.33±0.08\alpha^{\rm 1.78~GHz}_{\rm 118~MHz}=1.33\pm 0.08. The ridge, which fades into the larger scale emission, is broader in size and has considerably lower surface brightess and a moderately steeper spectrum, i.e. α118 MHz1.78 GHz1.5\alpha^{\rm 1.78~GHz}_{\rm 118~MHz}\sim 1.5. We propose that the brightest part of the radio halo is powered by the central sloshing in A2142, similar to what has been suggested for mini-halos, or by secondary electrons generated by hadronic collisions in the ICM. On the other hand, the steeper ridge may probe particle re-acceleration by turbulence generated either by stirring the gas and magnetic fields on a larger scale or by less energetic mechanisms, such as continuous infall of galaxy groups or an off-axis merger.Comment: 18 pages, 10 figures, 4 tables - A&A, accepte

    Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive?

    Get PDF
    Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies (log10_{10}[M_{*}/M_{\odot}]<9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10_{10}[M_{*}/M_{\odot}]<8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increases with decreasing stellar mass, and highlight that this is potentially due to increasing interaction timescales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results.Comment: 20 pages, 12 figures, Accepted to MNRA

    The SAMI Galaxy Survey: Unveiling the nature of kinematically offset active galactic nuclei

    Full text link
    We have observed two kinematically offset active galactic nuclei (AGN), whose ionised gas is at a different line-of-sight velocity to their host galaxies, with the SAMI integral field spectrograph (IFS). One of the galaxies shows gas kinematics very different to the stellar kinematics, indicating a recent merger or accretion event. We demonstrate that the star formation associated with this event was triggered within the last 100 Myr. The other galaxy shows simple disc rotation in both gas and stellar kinematics, aligned with each other, but in the central region has signatures of an outflow driven by the AGN. Other than the outflow, neither galaxy shows any discontinuity in the ionised gas kinematics at the galaxy's centre. We conclude that in these two cases there is no direct evidence of the AGN being in a supermassive black hole binary system. Our study demonstrates that selecting kinematically offset AGN from single-fibre spectroscopy provides, by definition, samples of kinematically peculiar objects, but IFS or other data are required to determine their true nature.Comment: MNRAS accepted. 14 pages, 11 figure
    corecore